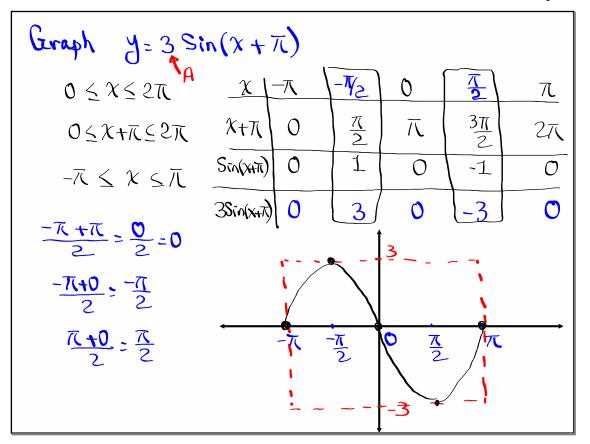
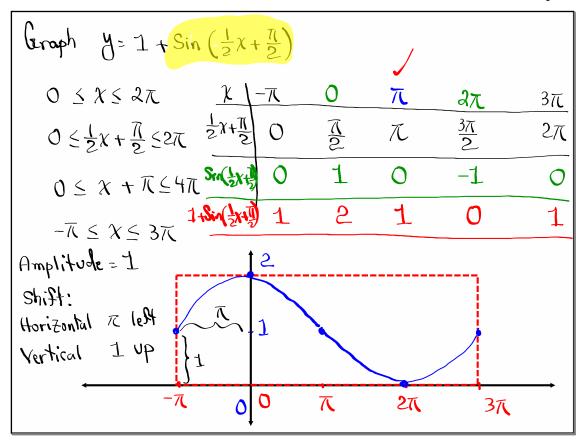


$$\begin{array}{c} \mbox{traph} \quad \mathcal{Y} = \sum_{1}^{1} \sin\left(\chi - \frac{\pi}{2}\right) \\ 0 \leq \chi \leq 2\pi, \qquad \chi = 0 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{3\pi}{2} \quad \frac{3\pi}{2} \\ 0 \leq \chi - \frac{\pi}{2} \leq 2\pi, \qquad \chi - \frac{\pi}{2} \qquad -7v_2 \qquad 0 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{3\pi}{2} \\ \frac{\pi}{2} \leq \chi \leq 2\pi, + \frac{\pi}{2} \qquad 5m(\chi - \frac{\pi}{2}) \qquad 0 \qquad 1 \qquad 0 \\ \frac{\pi}{2} \leq \chi \leq 5\pi \qquad 0 \qquad 1 \qquad 0 \qquad \frac{3\pi}{2} \qquad \frac{2}{2} \qquad \frac{5\pi}{2} \qquad \frac{5\pi}{2} \qquad \frac{5\pi}{2} \qquad \frac{5\pi}{2} \qquad \frac{3\pi}{2} \qquad \frac{3\pi}$$





New Sormulas:
Sin (A +B) = SinA (OSB + COSA SinB
(OS (A +B) = COSA (OSB - SinA SinB
tan (A + B) =
$$\frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Suppose $\sin \alpha = \frac{3}{5}$, α is in QI $\int_{4}^{4} \frac{1}{7}^{3}$
 $(OS\beta = -\frac{5}{13}$, β is in QII $\int_{4}^{13} \frac{12}{12}$
Sind $Sin(\alpha + \beta)$ +
 $= Sin\alpha (OS\beta + COS\alpha Sin\beta)$
 $= \frac{3}{5} \cdot \frac{-5}{13} + \frac{4}{5} \cdot \frac{12}{13} = -\frac{15}{65} + \frac{48}{65} = \frac{33}{65}$

$$\tan \alpha = \frac{3}{4} , \alpha \text{ in QII} \qquad 5 \\ \cos\beta = \frac{12}{13} , \beta \text{ in QIV} \qquad \frac{13}{12} \\ \frac{13}{12}$$

Since
$$\frac{3}{8}$$
, $\frac{7}{7}_{2} < \alpha < \pi$ QI
 $\frac{30^{\circ}}{150^{\circ}}$ $\frac{50^{\circ}}{150^{\circ}}$ $\frac{31}{155}$
 $\frac{30^{\circ}}{155} = \frac{2}{5}$ $\pi < \beta < \frac{31}{2}$ QII
 $\frac{30^{\circ}}{1}$ $\frac{20^{\circ}}{1}$ $\frac{31}{1}$
 $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$
 $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$
 $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$
 $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$ $\frac{5}{1}$
 $\frac{5}{1}$ $\frac{5}{1}$

Prove
$$\tan(A + B) = \frac{\tan A}{1} + \tan B$$

 $\frac{1}{2} - \tan A \tan B$
 $\tan(A + B) = \frac{\sin(A + B)}{(\cos(A + B))} = \frac{\sin A \cos B}{(\cos A \cos B)} + (\cos A \sin B)$
 $\frac{\sin A}{\cos B} = \frac{\cos A}{\cos B} = \frac{\sin A}{\cos A} \sin B$
Divide everything by $\cosh \cos B$
 $\frac{\sin A}{\cos B} + \frac{\cos A}{\cos B} = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A}$
 $\frac{\cos A}{\cos B} = \frac{\sin A \sin B}{\cos A \cos B} = \frac{1 - \frac{\sin A}{\cos B}}{\frac{\sin A}{\cos B}} = \frac{1 - \frac{\tan A}{\tan B}}{1 - \tan A} \tan B$

Sind the exact value of
$$\cos 75^{\circ}$$
.
 $75^{\circ} = 45^{\circ} + 30^{\circ}$
 $(\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ}))$
A B
 $= (\cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ})$
 $= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$

$$Sin(A-B) = SinA Cos B - Cos A SinB$$

$$Cos(A-B) = Cos A Cos B + SinASinB$$

$$tan(A-B) = \frac{Tan A - Tan B}{1 + Tan A Tan B}$$

$$SinA = \frac{4}{5} \quad A is in QI$$

$$SinB = \frac{5}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinB = \frac{5}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinA = \frac{4}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinB = \frac{5}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13}$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13} \quad B is in QII$$

$$JB = \frac{1}{13} \quad B is in QII$$

$$SinA = \frac{1}{13}$$

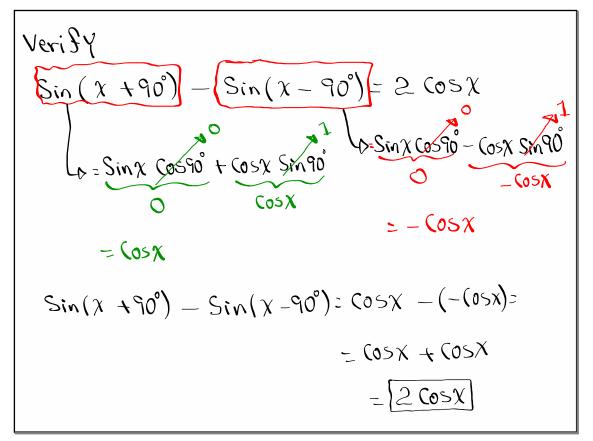
find exact Value for Sin 15°.
Hint:
$$15^{\circ} = 45^{\circ} - 30^{\circ}$$

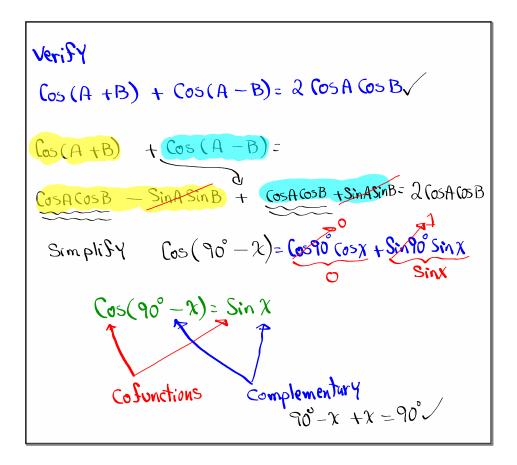
Sin $15^{\circ} = Sin (45^{\circ} - 30^{\circ}) = Sin 45^{\circ} Cos 30^{\circ} - Cos 45^{\circ} Sin 30^{\circ}$
 $= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$
Cos 75° = Sin 15°
Angles of Columptions = $\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$
Are Complementary.

Prove
$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

 $1 + \tan A \tan B$
 $\tan(A - B) = \tan(A + (-B))$
 $= \frac{\tan A + \tan(-B)}{1 - \tan A \tan(-B)}$
 $= \frac{\tan A + -\tan B}{1 - \tan B} = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

Genven: Sin A =
$$\frac{5}{5}$$
, A is in QI,
 $\tan B = \frac{3}{4}$, B is in QI
 $\int A = \int 5$
 $\int 20$
 $\int 3$
 $\int B = \int 3$





VeriSY
Sec
$$(A + B) = \frac{(o_{5}(A - B))}{(o_{5}^{2}A \leq St_{A}^{2}B}$$

Sec $(A + B) = \frac{1}{(c_{5}(A + B))} = \frac{1}{(c_{5}A(c_{5}B) + SinASinB)}$
Multiply everything by $\frac{c_{5}A}{c_{5}B}$
 $\frac{c_{5}A}{c_{5}B} \cdot 1$
 $= \frac{c_{5}A}{c_{5}B} \cdot c_{5}A(c_{5}B) - \frac{c_{5}A}{c_{5}B} \cdot SinASinB}$
Multiply by $(o_{5}B)$
 $= \frac{\frac{c_{5}A}{c_{5}B}}{c_{5}B} - \frac{c_{5}A}{c_{5}B} \cdot \frac{c_{5}A}{c_{5}B} - \frac{c_{5}A}{c_{5}B}}{c_{5}B} = \frac{c_{5}A}{c_{5}A}$
 $= \frac{c_{5}A}{c_{5}B} - \frac{c_{5}ASinASinB}{c_{5}B}}{c_{5}B} = \frac{c_{5}A}{c_{5}A} - \frac{c_{5}ASinASinB}{c_{5}B}}$
 $= \frac{c_{5}A}{c_{5}B} - \frac{c_{5}ASinASinB}{c_{5}B}} = \frac{1}{c_{5}(A + B)}$

Work on RHS

$$\frac{Cos(A-B)}{Cos^{2}A - Sin^{2}B} = \frac{CosACosB + SinASinB}{Cos^{2}A - Sin^{2}B}$$

$$= \frac{CosACosB + SinASinB}{(CosA + SinB)(CosA - SinB)}$$
Divide by CosACosB + SinASinB

$$= \frac{1}{(CosA + SinB)(CosA - SinB)}$$

$$CosACosB + SinASinB$$

$$= \frac{1}{(CosA + SinB)(CosA - SinB)}$$

$$CosACosB + SinASinB$$

$$= \frac{1}{(Cos^{2}A - Sin^{2}B)}$$

$$= \frac{1}{(CosA + SinB)(CosB + SinASinB)}$$

How about

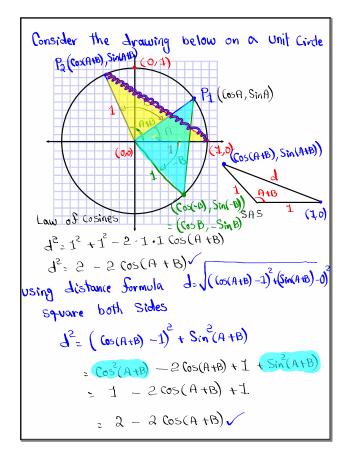
$$\frac{1}{Cos(A+B)} = \frac{Cos(A-B)}{Cos^{2}A - Sin^{2}B}$$

$$\frac{Cross - MUHiplY}{Cos^{2}A - Sin^{2}B} = Cos(A+B) \cdot Cos(A-B)$$

$$Cos(A+B) \cdot Cos(A-B) =$$

$$Cos(A+B) -$$

$$Cos($$



$$\int_{a+B}^{a+B} = \int_{a+C}^{cosH} (\cos H - (\cos B)^{2} + (\sin A - 5inB)^{2}$$

$$= \int_{a+B}^{cosH} (\cos A - (\cos B)^{2} + (\sin A + 5inB)^{2}$$

$$= \int_{a+C}^{cosH} (\cos A - (\cos B)^{2} + (\sin A + 5inB)^{2}$$

$$= \int_{a+C}^{cosH} (\cos B - 5inB)$$

$$= \int_{a+C}^{cosH} (\cos B - 5inB)$$

$$= \int_{a+C}^{cosH} (\cos B + 25inAS)$$

$$\int_{a+C}^{cosH} (\cos B - 2inAS)$$

$$\int_{a+C}^{cosH} (\cos B - 2inAS)$$

$$\int_{a+C}^{cosH} (\cos B - 5inAS)$$

$$Replace B with - B,$$

$$\int_{a+C}^{cosH} (\cos B - 5inAS)$$

$$= \int_{a+C}^{cosH} (\cos B - 5inAS)$$

$$\int_{a+C}^{cosH} (\cos B - 5inAS)$$

Prove
$$Sin(A+B) = SinA CosB + CosA SinB$$

 $Sin(A+B) = Cos(90°-(A+B))$
Cosonctions $A+B + = 90°$
 $= 90 - (A+B)$
 $= Cos(90°Cos(A+B) + Sin90°Sin(A+B))$
 $= Sin(A+B)$
 $Sin(A+B) = Cos(90°-(A+B))$
 $= Cos(90°-A) + CosB + Sin(90°-A) + SinB)$
 $= Cos(90°-A) + CosB + Sin(90°-A) + SinB)$
 $= Cos(90°-A) + CosB + Sin(90°-A) + SinB)$
 $= Sin(A+B) = SinA(cosB + CosA SinB)$
Replace B with $-B$ (osB - SinB)
 $Sin(A-B) = SinA(cosB - CosA Sin(-B))$
 $= SinA(cosB - CosA SinB)$